

POLYURETHANE RIGID FOAM PORTFOLIO PRODUCT OVERVIEW

Table of Contents

Company Introduction	P. 3
CNSL Technology	P. 4
CNSL Polyol Technology	P. 5-7
CNSL Polyols Compatibility	P. 8-9
CNSL Polyols Performance	P. 10
CNSL Mannich Polyols Performance	P. 11-12
CNSL Polyols Performance in Spray Foam	P. 13-17
CNSL Polyols as Additives in Spray Foams	P. 18-19
CNSL Polyols Performance in PIR Foams	P. 20
CNSL Polyols Performance in PUR Flooring Foams	P. 21
CNSL Polyols Performance in PUR Appliance Foams	P. 22-23
Diluents for Polyurethane Foams	P. 24-26
Surfactants for Polyurethane Foams	P. 27

ABOUT US

Cardolite uses CNSL derivatives as key building blocks for most of its products to achieve unprecedented performance that solves today's problems in a sustainable manner.

Over 35 years supplying high quality specialty chemicals derived from Cashew Nutshell Liquid (CNSL), a renewable, nonfood chain material. Dedicated sales force with local representation in over 30 countries. Warehouses set up in the USA, Latin America, Europe, China and India. The most advanced CNSL manufacturing facilities in the world located in Zhuhai (Guangdong), China and Mangalore, India

MARKETS & PRODUCT LINES

Cardolite continues to invest heavily on innovation that leverages the unique properties of CNSL technology. Cardolite operates advanced research and technical service laboratories in the USA, China and India that use CNSL as a primary building block to develop specialty materials with demonstrated advantages over some traditional petro-based chemistries.

Product Lines for Foam

- Polyol and Diol Resins
 CNSL Modified
 Novolacs and Aromatics
 Mannichs
 Polyethers
 - Polyesters
- Diluents
- Surfactants

Other Product Lines

- NCO Blocking Agents
- Hydrocarbon Resins
- Resin Diluents and Modifiers
- Epoxy Curing Agents
- Friction Particles and Resins

Markets

- Rigid and Flexible Foams
- Coatings
- Adhesives and Sealants
- Composites
- Automotive Brakes
- Bioplastics and Biopolymers

CNSL TECHNOLOGY

Cardanol is a unique natural phenolic material obtained by distilling CNSL and serves as the primary building block for Cardolite polyols and derivatives. The molecule is composed of an aromatic ring with an OH group and a long aliphatic side chain, which bring valuable intrinsic benefits to foams.

RENEWABLE

From the beginning, Cardolite products have been based on cashew nutshell liquid, a natural, non-food chain, and annually renewable biomaterial. The technology has been widely adopted because there are inherent performance benefits gained from using this starting raw material without sacrificing performance or cost.

Annually renewable with high biocontent derivatives

Low viscosity for low or zero V.O.C.

Cost effective

Does not nterfere with :he food chain

High performance

Better labeling compared to phenc based materials

CNSL POLYOL TECHNOLOGY

Cardolite polyols based on Cashew Nutshell Liquid (CNSL) Technology are functionalized to provide specific handling and performance properties. A wide range of viscosities, hydroxyl values, molecular weights, and functionalities can be achieved with CNSL technology to meet different application requirements in rigid foams. The intrinsic benefits inherited from CNSL technology translate into polyols with fast reactivity, good compression strength and fire resistance, hydrophobicity, and good compatibility with various blowing agents. Typical properties and recommended uses for the different CNSL polyol families follow.

Novolac and Aromatic Polyols		 Typically low in viscosity and high in functionality 							
	Aromatic Polyois	 Very high in biocontent (≥ 80%) 							
		 Offer high compression strength 							
		 Provide aromaticity for excellent fire resistance 							
		 Good partial replacements for polyether polyols in spray foams, insulation panels and boardstocks, pour-in-place and injection foams for improved fire resistance and reactivity 							
		 Suitable replacements for aliphatic polyester polyols in high index PIR foams to improve compression strength and maintain excellent fire properties and reactivity 							
	Mannich Polyols	 Wide range of hydroxyl values 							
		 High in biocontent (> 50%) 							
		 Very fast reactivity 							
		 Provide aromaticity for excellent fire resistance 							
		 Excellent replacement for petrochemical-based Mannich polyols in spray foams, insulation panels and boardstocks, pour-in-place and injection foams with similar or better properties 							
		 Suitable replacements for aromatic polyester polyols in PIR foams while maintaining excellent reactivity, fire resistance and mechanical properties 							
	Diols	Low hydroxyl values							
		 High in biocontent (> 50%) 							
		 Suitable as building blocks for prepolymers and modifiers for PUR foams 							
		 Suitable for use in flexible foams 							

Table 1: CNSL Aromatic, Novolac and Specialty Polyols Typical Properties

Product	Color ¹ (Gardner)	Avg. OH value ² (mg KOH/g)	Viscosity ³ 25°C (cPs)	Avg. OH Func.⁴	Bio- content⁵ (%)	Description	Foam Applications
LITE 9001	6	175	2,000	4.3	88	 Light color version of NX-9001 Very fast cure Good stability in HFO blown formulas 	 Spray foam Continuous PUR panels Rigid boardstocks High-med index PIR
NX-9001	18	175	2,000	4.3	88	 Excellent alkaline resistance Low water absorption Good mechanical properties and fire resistance Good stability in HFO blown formulas 	- Spray foam - Continuous PUR panels - Rigid boardstocks - High-med index PIR
NX-9001LV	18	175	1,000	3.8	91	 Low viscosity version of NX- 9001 Good stability in HFO blown formulas 	 Spray foam Continuous PUR panels Rigid boardstocks High-med index PIR
NX-9004	18+	198	5,000	4.1	93	 REACH compliant version of NX-5285 Higher viscosity Good stability in HFO blown formulas 	- Spray foam - Continuous PUR panels - Rigid boardstocks - High-med index PIR
NX-5285	18+	200	2,500	3.5	93	 Fast cure Cost effective Low water absorption Good mechanical properties and fire resistance Good stability in HFO blown formulas 	 Spray foam Continuous PUR panels Rigid boardstocks High-med index PIR
LITE 9006	14	175	2,250	3.3	95	- Light color version of NX-9006 - Good stability in HFO blown formulas	 Spray foam Continuous PUR panels Rigid boardstocks High-med index PIR
NX-9006	18	190	3,000	4.4	95	 Slower cure Cost effective Low water absorption Good mechanical properties and fire resistance Good stability in HFO blown formulas 	 Spray foam Continuous PUR panels Rigid boardstocks High-med index PIR
NX-9007	14	175	2,900	3.3	80	Higher strength andelongationGood water resistance	 Spray foam Continuous PUR panels Rigid boardstocks High-med index PIR
NX-9008	10	340	3,000	3.0	61	 High strength polyether polyol Good stability in HFO blown formulas 	 Spray foam Continuous PUR panels Rigid boardstocks

¹ASTM D1544, ²ASTM D4274, ³ASTM D2196 at 25°C, ⁴Average estimated value by GPC.

⁵Calculated bio-content values are estimated based on composition and process parameters. They have not been validated by ASTM D6866 measurements and should be considered as theoretical estimates only.

Table 2: CNSL Mannich Polyols Typical Properties

Product	Color ¹ (Gardner)	Avg. OH value ² (mg KOH/g)	Viscosity ³ 25°C (cPs)	Avg. OH Func.⁴	Bio- content⁵ (%)	Description	Foam Applications
NX-9101	15	430	2,500	3.0	72	 Low viscosity Medium-high reactivity Good fire performances Good thermal stability 	- Spray systems - PUR systems - Pour-in-place applications
NX-9102	15	445	7,750	4.0	78	 Medium-high reactivity Good fire performances and thermal stability Good mechanical properties 	- Spray systems - Pour-in-place applications
NX-9103	15	475	10,500	4.0	60	 Medium-high reactivity Good fire performances and thermal stability Good mechanical properties 	- Spray systems
NX-9104	15	245	5,500	3	59	 Mannich polyol with best stability in HFO blown formulas Medium reactivity Good fire performances and thermal stability Good mechanical properties 	- Spray systems - Continuous PUR/PIR panels - Pour-in-place applications
NX-9106	15	310	2,400	3.7	80	 Low viscosity Medium reactivity Good fire performances Good thermal stability 	- Spray systems - PUR systems - Pour-in-place applications

Table 3: CNSL Diols Typical Properties

Product	Color ¹ (Gardner)	Avg. OH value ³ (mg KOH/g)	Viscosity ² 25°C (cPs)	Avg. OH Func.⁴	Bio- content⁵ (%)	Description	Foam Applications
NX-9201	14	75	1,400	~2.0	87	 Low-medium viscosity CNSL-polyester diol polyol Low reactivity Good thermal stability 	- Spray systems - PUR systems - Pour in place applications - Flexible Foam
NX-9203	14	85	3,000	~2.0	69	- Low-medium viscosity CNSL-polyester diol polyol - Low reactivity - Good thermal stability	- Spray systems - PUR systems - Pour in place applications - Flexible foam

CNSL POLYOLS COMPATIBILITY

Compatibility with Other Polyols

The compatibility of novel CNSL and standard petrobased polyols is shown in Table 4. Several blends of CNSL polyols with petro-based Mannich polyols, aliphatic and aromatic polyester polyols, and polyether polyols were monitored for their stability and ranked based on phase separation extent. CNSL-based polyols, even if characterized by a high hydrocarbon content, contain enough polar groups (e.g. amino, hydroxyl, esters) to guarantee excellent compatibility with polyether polyols and petro-based Mannichs. On the contrary, as seen with other natural oil polyols, CNSL polyols show limited miscibility with polyester polyols (both aliphatic and aromatic). However, this limitation can be easily overcome by properly tuning the composition of the polyurethane formula. As an example, a polyether polyol may be used as a co-polyol, balancing the CNSL polyol/polyester polyol ratio. Other options include the use of non-ionic surfactants, emulsifiers or blowing agents with a solvent effect (e.g. methyl formate).

Table 4: Compatibility of Polyols	CNSL-Based Polyols					
Petro-Based Polyol	NX-9101	NX-9102	NX-9104	NX-9001	NX-9006	
Mannich (OH 425)	+++++	+++++	++++++	++++++	++++++	
Aromatic Polyester (OH 240)	+	+	+	+	+++++	
Aliphatic Polyester (OH 350)	+	+	+	+	+++++	
Propoxylated Sorbitol Polyether (OH 300)	+++++	+++++	+++++	+++++	+++++	
Alkoxylated Sucrose Based Polyether (OH 360)	+++++	+++++	++++	+++++	+++++	
Alkoxylated Sucrose/DEG Based Polyether (OH 440)	+++++	+++++	+++++	++++	+++++	
Ethoxylated/Propoxylated Glycerine Based Polyether (OH 33)	+++++	+++++	++++	+++++	+++++	
PPG 1000 (OH 114)	+++++	+++++	+++++	+++++	+++++	
Propoxylated Glycerine Polyether Polyol (OH 156)	+++++	+++++	+++++	+++++	+++++	
Propylene Oxide/Ethylene Oxide Based Polyether Polyol (OH 48)	++++++	++++++	++++++	++++++	+++++	

++++++ clear blend at both 25/75 and 50/50 CNSL/petroleum ratio

+++++ clear blend at 50/50, but phase separation at 25/75 CNSL/petroleum ratio

++++ clear blend at 50/50 and cloudy, but non-separating blend at 25/75 CNSL/petroleum ratio

+++ cloudy blend at 50/50, but phase separation at 25/75 CNSL/petroleum ratio

++ cloudy blend at 25/75, but phase separation at 50/50 CNSL/petroleum ratio

+ phase separation at both 25/75 and 50/50 CNSL/petroleum ratio

Compatibility with Blowing Agents

The compatibility of CNSL-based polyols with standard blowing agents for PUR spray and PIR polyurethane foams (e.g. n-pentane, HFC, methylformate, HFO) is shown in Table 5. Polyols must exhibit good compatibility with the blowing agent of choice to ensure adequate final foam properties and B-part stability.

This miscibility study has been accomplished by blending polyols (both CNSL- and petro-based) and blowing agents in a 60/40 weight ratio respectively, in tightly closed graduated containers, recording the appearance of the mixtures after 24 hours at room temperature. In case of phase separation, the miscibility has been determined by measuring the height of the blowing agent phase: since the density is known, the amount (in grams) of the blowing agent dissolved into the polyol-phase can be easily recovered. Results of \geq 40 indicate full miscibility.

Cardanol-based polyols demonstrated excellent miscibility with methyl-formate, n-pentane and HFO, better than petro-based Mannich and polyester polyols, while the compatibility with HFC is comparable to commercial references.

Table 5: Compatibility with Blowing Agen	Polyol/ methyl-formate (60/40 w/w)	Polyol/HFC (60/40 w/w)	Polyol/ n-pentane (60/40 w/w)	Polyol/HFO (60/40 w/w)		
Polyol Type	Maximum Wt. for Single Phase Solution (%)					
NX-9101		≥ 40	~ 10	≥ 40	≥ 40	
NX-9102		≥ 40	~ 12	≥ 40	≥ 40	
NX-9104		≥ 40	~ 10	≥ 40	≥ 40	
Petro-Mannich polyol (OH 425)		≥ 40	~ 25	~ 4	≥ 40	
Petro-Mannich polyol (OH 450)		≥ 40	~ 26	~ 2	≥ 40	
NX-9006	24 h at RT	≥ 40	~ 6	≥ 40	≥ 40	
NX-9001		≥ 40	~ 6	≥ 40	≥ 40	
Aromatic-PA polyester polyol (OH 240)		≥ 40	~ 6	~ 2	~ 9	
Aromatic-PET polyester polyol (OH 240)		≥ 40	~ 12	~ 2	~ 25	
Aliphatic polyester polyol (OH 350)		≥ 40	~ 14	~ 1	~ 23	
Polyether polyol (OH 360)		≥ 40	≥ 40	≥ 40	≥ 40	

CNSL POLYOLS PERFORMANCE THERMAL RESISTANCE

Thermal Resistance

CNSL-based polyols are expected to provide good thermal resistance due to the aromatic ring in their backbone. Thermal gravimetric results shown in the TGA graph on the right confirm that in average, CNSL-based polyols can withstand higher temperatures than typical polyether polyols and petro-based Mannich polyols. CNSLbased polyols also performed similarly or better than aliphatic and aromatic polyesters. Results were reported based on the temperature required for a 20% polyol weight loss.

Graph 1: TGA Analysis

Aromaticity

The aromatic content of CNSL-based polyols can be calculated based on composition and manufacturing process for comparison purposes to other polyol chemistries. In general, CNSL-based Novolacs have similar aromatic content to aromatic polyester polyols (20-23%) and CNSL-based Mannich polyols have comparable aromatic content to petrobased Mannich polyols (16-19%). Specific values can be obtained as needed.

CNSL MANNICH POLYOLS AS PETROCHEMICAL-BASED MANNICH POLYOLS REPLACEMENTS

Handling and Formulating Properties

CNSL-based Mannich polyols are lower in viscosity and have a broader range of hydroxyl values than petro-based analogues. Being compatible with standard polyols and blowing agents, Cardolite CNSL-based Mannich polyols are an excellent bio-based replacement to conventional petro-based Mannich polyols with similar or better performance. Moreover, CNSL Mannich polyols offer excellent field processing, good dimensional stability, low friability, good flow, very uniform fine cell structure and high closed cell content.

Reactivity and Compression Strength

Due to the nature of the hydroxyl groups within each derivative, CNSL-based Mannich polyols exhibit reaction profiles comparable or faster than standard commercial Mannich polyols, thus being suitable for the majority of rigid polyurethane systems, including PIR systems. Moreover, the combination of aromatic content and long alkenyl chain of CNSL Mannich polyols delivers comparable or superior compression strength versus petro-based Mannich polyols at similar density levels in PUR foams.

Table 6: Formulation for Spray Foam

Formulation A	Parts
Sucrose/glycerine based polyether polyol (360OH)	65
Aromatic polyester polyol (315 OH)	25
Mannich polyol	10
ТСРР	20
Water	1.5
Blowing catalyst	1.2
Gelling catalyst	1.2
Silicone surfactant	1.4
Solkane 365/227	14
pMDI index	120

Graph 3: Formulation A Reaction Profile & Mechanical Properties

Rigid Foam Product Overview | 11

Limiting Oxygen Index **O**2

Limiting Oxygen Index percent was measured for Formulation A as an indication of flammability. CNSL-based Mannich polyols NX-9101 and NX-9102 performed similarly or slightly better than petro-based Mannichs in Formulation A as indicated in Table 7.

Fire Resistance

The high aromatic content of CNSLbased Mannich polyols and overall composition results in excellent fire resistance properties that can be seen by lower burning rates and less flammability than petro-based counterparts as demonstrated in Graph 4.

Cost Reduction

[]

The surfactant-like properties from CNSL derivatives and their inherent fast reactivity allows foam formulators to reduce the use of expensive additives such as blowing and gelling catalysts as well as surfactants as shown in Table 8. The CNSL-based foam shows similar dimensions and cell structure to the reference.

Table 7: LOI for Formulation A

Formulation A - Mannich Polyol Used at 10 parts	Limiting Oxygen Index %
NX-9101	24.8
NX-9102	24.7
Petro-Mannich polyol (425 OH)	23.8
Petro-Mannich polyol (470 OH)	24.2

Table 8: Formulation For Appliances With Reduced Cost

Formulation B	Reference Parts	CNSL Modified Parts	Change %	
Sucrose/glycerine based polyether polyol (490 OH)	18.1	18.1	n/a	
Aromatic polyester polyol (2400H)	7.2 7.2		n/a	
Mannich polyol	10.9	10.9 (NX-9101)	n/a	
ТСРР	2.36	2.36	n/a	
Water	0.64	0.68	+6.25	
Blowing catalyst	0.07	0.028	-60	
Gelling catalyst	0.37	0.24	-35	
Silicone surfactant	0.71	0.55	-22.5	
Solkane 365/227	7	7	n/a	
pMDI index	115	115	n/a	

CNSL-BASED POLYOLS IN SPRAY FOAM FORMULATIONS

Spray Foam Closed Cell

Table 9 shows two comparisons between CNSL- and Petro-based Mannich polyols in systems using Solstice LBA as the blowing agent in closed cell spray foam formulations.

Formulations C and D have high amounts of Mannich polyols and reactivity profile results indicate NX-9101 is faster than the hydroxyl equivalent petro-Mannich given that a reduction in catalyst amount in formulation D did not affect the reaction times. Moreover, both formulations provided similar density, compression strength and thermal resistance. Images of both foams obtained at very high resolution (synchrotron light) indicate NX-9101 provided good cell size that should yield high insulation properties (Image 1).

Formulations E and F use Mannich polyols with a sightly higher hydroxyl value in lower amounts. Results showed NX-9102 is faster than the equivalent petro-Mannich for a similar density foam and compression strength. Thermal conductivity at low and room temperatures as well as the limiting oxygen index were very similar for both formulations, with values indicating good insulation and fire resistance properties. NX-9102 delivered slightly better thermal resistance than the petro-analogue.

Image 1: Synchrotron Light Images of Formulations C and D

Formulation C number of cells per unit: 100

Formulation D number of cells per unit: 160

Table 9: Spray Foam Closed Cell Formulations with NX-9101 and NX-9102

Components (parts)		Formulation C Formulation D		Formulation E	Formulation F	
Polyether polyol (OH 490)		15				
Aromatic -PA polyester polyol	(OH 240)	20		25		
Glycerine		2				
Petro-Mannich polyol (OH 425	5)	35				
NX-9101			35			
Polyether polyol (OH 360)				65		
High viscosity brominated dio	l			8		
Petro-Mannich polyol (OH 448	3)			10		
NX-9102					10	
ТСРР		11		20		
Dabco LK-221E		0.5	;			
Dabco DC-193		1		1.4		
Water		2		1.5		
Polycat 203		1	0.9	1.2		
Dabco 33LV		0.5	0.3	1.2		
Solstice LBA		12.	5	14		
NCO Index		110)	120		
		2	2	2		
		3	3	8	8	
String Time (sec)		14	13	51	40	
Tack Free Time (sec)		25	23	99	75	
Density, lb/ft ³ (kg/m ³)		1.68 (27)	1.67 (26.9)	2.66 (42.6)	2.65 (42.5)	
Compression strength, psi (kP	a)	16.7 (115)	14.6 (101)	25.8 (178)	26.9 (186)	
Thermal conductivity (I),	24 °C	n.a.	n.a.	0.171 (24.7)	0.173 (24.9)	
Btu in/ft² hour °F (mW/mK)	10 °C	n.a.	n.a.	0.162 (23.4)	0.164 (23.6)	
Limiting Oxygen Index (%)		n.a.	n.a.	25	24.9	
Temperature at 20% weight lo flow, scan from 25-600 °C)	oss (°C, TGA, air	293.7	295.5	281.3	292.3	

Reactivity and Compression Strength

NX-9104 can be used as replacement for aromatic polyester polyols in polyurethane spray foams as illustrated by formulation G. In comparison to reference A, formulation G shows improved fire resistance according to DIN4102 B2 test results and lower water absorption due to the hydrophobic and aromatic backbone of NX-9104. The NX-9104-based foam showed similar density and good compression strength

in both directions. The slightly slower reactivity shown by NX-9104 can be addressed by minor adjustments in the formulation as demonstrated by formulation H compared to reference B. In this case, string time and tack free times of both formulations are similar, and as seen with previous results, the formulation based on NX-9104 showed better fire resistance and lower water absorption.

Table 10: Spray Foam Closed Cell Formulation with NX-9104

Components (parts)		Reference A Formulation G						
Aromatic polyester polyol (OH 250)			35					
Sucrose-based polyether (OH 360)			20		20			
Triethanolamine-based polyol (OH 440)			45				45	
NX-9104					35			
Triethanolamine			1.5		1.5			
тсрр			25				25	
ТЕР			5				5	
DABCO T120			0.3				0.3	
Polycat 203			1.2			1.2		
DMCHA			1		1			
DABCO DC193	2.5				2.5			
Water		2.1			2.2			
Solstice LBA		12			12			
			120				120	
pindi index			120				120	
Mix Time (sec)			5				5	
String Time (sec)			22				24	
Tack Free Time (sec)			30				33	
Density (Kg/m³)		3	37.0				36.7	
Compression strength, parallel (kPa)			244				266	
Compression strength, perpendicular (kPa)			290				264	
Tg (°C)		1	39.4				157.5	
Water absorption, % (4 dd @ RT)		(0.05				0.01	
	Sur	face	E	dge	Surf	ace	E	dge
DIN 4102 (Average on 2 specimens)	Time (sec)	Length (mm)	Time (sec)	Length (mm)	Time (sec)	Length (mm)	Time (sec)	Length (mm)
	1	145	2	150	1	133	1	125

Table 11: Spray Foam Closed Cell Formulation with NX-9104

Components (parts)	Reference B				Formulation H				
Sucrose-based polyether (OH 360)	35					35			
Aromatic polyester polyol (OH 250)		2	5						
Petro-mannich polyol (OH 448)		4	0			40)		
Glycerol						1			
NX-9104						24	ļ		
ТСРР		1	5			15	5		
ТЕР		I	5			5			
Water		1	.9			1.9)		
T12		0	.5			0.5	5		
DABCO 33LV	1.2				1.2				
DABCO DC193	1.4			1.4					
Cyclopentane	12					12			
pMDI Index	120 120				0				
Mix Time (sec)			5			5			
String Time (sec)		2	0			20)		
Tack Free Time (sec)		2	5			23	}		
Density (Kg/m³)		31	0			31.	9		
Compression strength, parallel (kPa)	116 118				8				
Compression strength, perpendicular (kPa)	149				132				
Water absorption, % (4 dd @ RT)	2.85			0.02					
	Surface Edge			Sur	face	Edg	ge		
DIN 4102 (Average on 2 specimens)	Time (sec)	Length (mm)	Time (sec)	Length (mm)	Time (sec)	Length (mm)	Time (sec)	Length (mm)	
	1.5	140	1.5	150	1	120	1	115	

Table 12: Spray Foam Closed Cell Formulation with NX-9008

Components (parts)	Reference C	Formulation I
Propoxylated sorbitol polyether polyol (OH 300)	40	0
Aromatic PET polyester polyol (OH 240)	25	25
Propoxylated Mannich polyol (OH 448)	35	35
NX-9008	0	40
ТСРР	20	20
Water	1.90	1.75
DABCO T12	0.15	0.15
DABCO 33LV	1	1
Tegostab B8461	1.4	1.4
Solkane 365/227	12	12
pMDI Index	110	110
Mix time (sec)	5	5
String time (sec)	17	16
Track free time (sec)	32	29
Density (kg/m³)	39.7	40.1
Compression strength, parallel (kPa)	169	175
UL-94, vertical (after flame, sec)	V1 (11.8)	V0 (6.7)

NX-9008 is a suitable, biorenewable replacement for polyether polyols in polyurethane rigid foams. In the example shown in Table 12, a propoxylated sorbitol polyether polyol was fully replaced by NX-9008 in formulation I. Formulation I provided better fire resistance according to UL 94 test results and good mechanical properties, density and reactivity.

CNSL-BASED POLYOLS AS ADDITIVES IN SPRAY FOAMS

Cardolite's high biocontent aromatic and novolac type polyols are excellent options for polyurethane rigid foams. They can be incorporated at low to higher levels depending on application requirements to increase biocontent and lower water absorption while maintaining good properties and minimizing costs. Spray foam formulations displayed on Table 13 show that CNSL-based polyols can be partial replacements for aromatic polyester polyols without the need to reformulate the polyurethane foam. CNSL- based polyols provide good performance overall. Our evaluations demonstrated that at 5%, NX-9001 and LITE 9006 provided an improvement in UL 94 performance. In addition, NX-9001 showed excellent compression strength and similar reactivity to standard aromatic polyol. Foams modified by NX-9006 delivered the best thermal stability as observed by the very low weight loss after exposure to 150°C for 30 min. NX-5285 is another good option for more economical formulations that can accept a darker color.

NX-9001/NX-5285 provide similar reactivity to reference, while NX-9006/ LITE 9006 are slower. NX-9001/NX-9006/ LITE 9006 can be used at 5% level to maintain or improve fire resistance. NX-9001 provides the highest compression strength.

NX-9006 shows the best thermal stability.

NX-5285 is a lower cost, darker alternative.

CNSL Polyols help lower water absorption.

Table 13: CNSL Additives in Spray Foam Formulations

Components (parts)	REF 1	REF 2	SPF 1	SPF 2	SPF 3	SPF 4	SPF 5	SPF 6	SPF 7	SPF 8
Sucrose-based polyether (OH 360)	35	35	35	35	35	35	35	35	35	35
Aromatic polyester (OH 250)	25	0	0	0	0	0	0	0	0	0
Aromatic polyester (OH 315)	0	25	20	10	20	10	20	10	20	10
Petro-Mannich polyol (OH 444)	40	40	40	40	40	40	40	40	40	40
NX-9001	0	0	5	15	0	0	0	0	0	0
NX-9006	0	0	0	0	5	15	0	0	0	0
NX-5285	0	0	0	0	0	0	5	15	0	0
LITE 9006	0	0	0	0	0	0	0	0	5	15
ТСРР	15	15	15	15	15	15	15	15	15	15
Water	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90
DABCO T12 (tin catalyst)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
DABCO 33LV (amine catalyst)	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
DABCO DC193 (silicone surfactant)	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Cyclopentane	10	10	10	10	10	10	10	10	10	10
pMDI Index	115	115	115	115	115	115	115	115	115	115
Mix time (sec)	9	9	9	9	9	9	9	9	9	9
String time (sec)	18	17	18	19	19	22	16.5	17.5	18	20.5
Tack free time (sec)	22	20	20	22	23	25.5	21	20.5	22.5	25.5
Density (Kg/m³)	31.3	31	30.2	31.9	30.3	31.5	31.1	31.9	30.7	33.5
Compression strength, parallel (kPa)	141.8	123.7	133.7	128.5	121.7	128.8	117.1	122.8	117.4	124.4
Compression strength, perpendicular (kPa)	158.2	158.6	149.5	148.9	131.8	131.6	151.1	123.1	140.5	134.3
Tg (°C, DSC)	121.14	128.1	130.3	134.1	127.7	135	128.3	125.6	136.7	143.7
Weight loss (%, 30' @ 150 °C)	2.24	1.65	1.54	1.69	1.19	1.1	1.26	2.78	2.61	3.43
Water absorption (%, 5 days)	0.65	0.37	0.05	0.1	0.15	0.19	0.35	0.23	0.22	0.01
Vertical UL-94 (afterflame, sec)	4.8	3.7	3.4	4.1	3.8	3.8	4.3	4.7	2.2	4.3

CNSL-BASED POLYOLS AS REPLACEMENTS FOR POLYESTER POLYOLS IN PIR FOAMS

PIR Boardstock and Panels

Table 14 shows the performance of PIR boardstock and panel formulations where the polyester polyols are fully or partially replaced with NX-9104.

Formulations J and K use Solstice LBA and water as the blowing agents. The full replacement of an aromatic polyester with NX-9104, results in a faster cure profile even with the use of less amine catalyst, similar density and slightly higher compression strength. The aromatic polyester offered higher LOI, but NX-9104 gave similar thermal conductivity and slightly better TGA results.

Formulation M illustrates the effect of partially replacing both aromatic and aliphatic polyesters with NX-9104 in comparison to Formulation L when pentane is used as blowing agent in combination with water. Mechanical, thermal and fire properties were comparable for both PIR foams, with the NX-9104-based foam providing slightly faster reaction times.

Table 14: PIR Boardstock and Panels Formulations with NX-9104

Components (parts)		Formulation J	Fomulation K	Formulation L	Formulation M
Polyether polyol (OH 360)		3	0		
Aromatic -PA polyester polye (OH 240)	ol	70			
NX-9104			70		20
Aromatic -PET polyester poly (OH 240)	yol			50	40
Aliphatic polyester polyol (O	H 350)			50	40
ТСРР		1	5	2	0
Silicone DC5598		1.	.4	2	.5
Dabco EM400					3
Water		1.2	1.01	0.	.7
Dabco TMR2		1.	.2		
Dabco K15		1.	.5		
PMDETA		0.5	0.4		
Cat. LB				1	.2
Dabco K15				1	.5
Solstice LBA		2	0		
Pentane				15	
NCO Index		250		222	
Mix Time (sec)		8	8	15	15
String Time (sec)		43	38	126	102
Tack Free Time (sec)		95	70	185	156
Density, lb/ft ³ (kg/m ³)		2.33 (37.4)	2.35 (37.7)	1.98 (31.7)	2.01 (32.2)
Compression strength, psi (k	(Pa)	40.9 (282)	42.6 (294)	22.5 (155)	21.2 (146)
Thermal conductivity (l), Btu in/ft² hour °F (mW/	24 °C	0.155 (22.4)	0.159 (23.0)	n.a.	n.a.
mK)	10 °C	0.146 (21.1)	0.15 (21.7)	n.a.	n.a.
Limiting Oxygen Index (%)		27.0	24.5	24.7	24.8
Temperature at 20% weight loss (°C, TGA air flow, scan 25-600 °C)		315.5	319.7	312.2	311.5

CNSL POLYOLS AS REPLACEMENTS FOR EDA AND o-TDA BASED POLYOLS IN PUR FOR FLOORING APPLICATIONS

REF 1A PUR 1A PUR 2A PUR 3A PUR 4A PUR 5A **Components (parts)** REF 2A Sucrose-based polyether polyol (OH 490) 30 30 30 30 30 30 30 Alkoxylated EDA-based polyol (OH 450) 20 20 0 0 0 0 0 Alkoxylated-oTDA polyol (OH 400) 0 0 20 20 20 0 0 Glycerine-based polyether polyol (OH 156) 0 10 0 0 10 0 10 NX-9001 0 10 0 0 10 0 10 NX-9102 0 0 0 0 0 20 20 NX-5285 0 0 0 0 10 0 0 TCPP 20 20 20 20 20 20 20 DC193 1.5 1.5 1.5 1.5 1.5 1.5 1.5 0.5 Water 0.5 0.5 0.5 0.5 0.5 0.5 DMCHA 1.4 1.4 1.4 1.4 1.4 0.8 0.8 Polycat 9 1.4 1.4 0.8 1.4 1.4 1.4 0.8 Dabco T12 0.2 0.2 0.2 0.2 0.05 0.1 0.2 Solkane 365/227 15 15 15 15 15 15 15 150 150 150 150 150 150 150 pMDI Index Mix time (sec) 5 5 5 5 8 5 5 String time (sec) 26 21 28 24 25 17 15 Tack free time (sec) 37 29 37 35 39 36 34 Density (kg/m³) 44.4 43.4 44.1 46.2 41.2 46.1 48.4 Compression strength, parallel (kPa) 200 188 207 239 209 212 234 Compression strength, perpendicular (kPa) 219 232 217 225 217 207 225 Vertical UL-94 (after flame, sec) 2.8 1.8 1.8 2.1 1.4 2 1.1

Table 15: CNSL-based Polyols Comparison to EDA and o-TDA-based Polyols in PUR

CNSL polyols provide good mechanical properties and faster reactivity than alkoxylated EDA and o-TDA polyols. CNSL polyols provide better fire resistance than alkoxylated EDA polyol and o-TDA polyols (PUR 5). NX-9001 and NX-5285 are suitable replacements for glycerine polyether polyols (PUR 1/2/3) with adjustment in density.

CNSL POLYOLS PERFORMANCE IN PUR APPLIANCE FOAMS AS REPLACEMENTS FOR AROMATIC AMINE (o-TDA) INITIATED POLYOL

Table 16: CNSL Polyols Performance in PUR Appliance Foams

Components (parts)	REF (1B)	PUR 2B	PUR 3B	PUR 4B	PUR 5B	PUR 6B
Voranol RN490 (OH 490)	30	30	30	30	30	30
Voranol RN482 (OH 480)	20	20	20	20	20	20
Isoter 801SA (OH 300)	24	24	24	24	24	24
TD-405 (OH 400)	10	0	0	10	0	10
Elapol 80250 (OH 250)	4	4	4	0	4	0
NX-9102	0	10	7	0	7	0
NX-9001	0	0	3	0	0	0
NX-9104	0	0	0	4	0	0
NX-9006	0	0	0	0	3	0
NX-5285	0	0	0	0	0	4
DC193	1	1	1	1	1	1
DMCHA	1	1	1	1	1	1
Tegoamin A-33	1	1	1	1	1	1
Cyclopentane	9	9	9	9	9	9
pMDI Index	105	105	105	105	105	105
Niv time (see)	10	10	10	10	10	10
String time (sec)	10	10	10	10	10	10
String time (sec)	86	59	61	70	46	49
Tack free time (sec)	110	84	91	88	70	80
Density (kg/m³)	48.4	48.7	49.4	50.3	46.4	48.8
Exothermicity (°C)	133.8	129.5	106.2	112.7	120.8	129.9
Compression strength, parallel (kPa)	293	255	248	280	265	269
Compression strength, perpendicular (kPa)	261	253	259	270	233	255
Thermal conductivity (W/(m·K))	0.0257	0.0274	0.0253	0.0264	0.0295	0.0250

Graph 5: Exothermicity vs. time

CNSL-based systems show faster reactivity, lower exothermicity and faster temperature release than reference, which allow shorter demolding time. Formulas based on NX-9102/NX-9001 or NX-5285 show better thermal properties than reference.

DILUENTS FOR POLYURETHANE FOAMS

Cardanol (average structure)

Table 17: Cardanol Typical Properties

Cardanol Grades	Color (Gardner)	Viscosity (cPs)
NX-2024	4 - 9	45 - 60
NX-2025	≤ 5	≤ 60
NX-2026 ¹	≤ 2	≤ 60

¹Average OH value (mg KOH/g) is 187

Table 18: Mono-ethoxylated Cardanol Typical Properties

Mono-ethoxylated Cardanol Grades ²	Color (Gardner)	Viscosity (cPs)
LITE 2020 ³	≤ 14	30 -115
Ultra LITE 2020 ³	≤ 2	≤ 115

² LITE/UL 2020 are not European REACH registered. ³ Average OH value (mg KOH/g) is 164

Benefits and Uses

moisture sensitivity)

Alternative to castor oil and propylene carbonate

Used at an approx. 5% level in the system (polyol/additives side)

VISCOSITY CURVE FOR POLYURETHANES DILUENTS + POLYOLS

UL 2020 and NX-2026 showed good dilution power; better than TCPP and castor oil, but lower than TEP and propylene carbonate. All blends of additives with polyols were clear, except for ones based on castor oil and polyester polyol where haziness followed by phase separation was observed.

DILUENTS PERFORMANCE IN POLYURETHANE SPRAY FOAMS

Table 19: Diluents Performance in Polyurethane Spray Foams

Components (parts)	REF 3	SPF 9	SPF 10	SPF 11	SPF 12	SPF 13	SPF 14
Sucrose-based polyether (OH 360)	35	35	35	35	35	35	35
Aromatic polyester polyol (OH 250)	25	25	25	25	25	25	25
Petro-Mannich polyol (OH 444)	40	40	40	40	40	40	40
тсрр	0	5	0	0	0	0	0
ТЕР	0	0	5	0	0	0	0
Propylene carbonate	0	0	0	5	0	0	0
Castor oil	0	0	0	0	5	0	0
UL 2020	0	0	0	0	0	5	0
NX-2026	0	0	0	0	0	0	5
TCPP (flame retardant)	15	15	15	15	15	15	15
Water	1.9	1.9	1.9	1.9	1.9	1.9	1.9
DABCO T12 (tin catalyst)	0.5	0.5	0.5	0.5	0.5	0.5	0.5
DABCO 33LV (amine catalyst)	1.2	1.2	1.2	1.2	1.2	1.2	1.2
DABCO DC193 (silicone surfactant)	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Cyclopentane	10	10	10	10	10	10	10
pMDI Index	115	115	115	115	115	115	115
Mix time (sec)	9	9	9	9	9	9	9
String time (sec)	18	18.5	18	17	18	17	19
Tack free time (sec)	22	22	21	21	21	21	22
Part A viscosity at 25°C (cPs, no BA)	1823	1611	1171	1212	1673	1474	1493
Density (FRD, Kg/m³)	31.3	32.7	31.3	31.8	33.7	31.5	32.1
Compression strength, parallel (kPa)	141.8	134.4	130.5	115.9	127.7	140.3	144.3
Compression strength, perpendicular (kPa)	158.2	156.0	146.0	167.0	167.9	146.8	160.8
Tg (°C, DSC)	121.1	118.7	119.0	117.3	121.0	125.5	126.3
Weight loss (%, 30' @ 150 °C)	2.24	3.43	3.1	4.61	3.13	1.88	2.88
Water absorption (%, 5 days)	0.65	0.14	0.23	0.20	0.21	0.38	0.09
Vertical UL-94 (after flame, sec)	4.8	3.3	2.9	4.2	3.8	4.3	4.6

— Resulting foams show similar light yellow color.

— No significant difference in FRD was observed.

— Systems showed good mechanical properties, thermal properties (Tg) and fire resistance.

— The use of cardanol reduced weight loss after water immersion compared to other diluents.

26 | Rigid Foam Product Overview

SURFACTANTS FOR POLYURETHANE FOAMS

Cardanol Alkoxylation (average structures)

R = H, n=0: Ultra or LITE 2020, 1 EO cardanol (diluent) R = H, n=6: NX-7507, 7 EO cardanol R = H, n=8: NX-7509, 9 EO cardanol R = H, n=11: NX-7512, 12 EO cardanol

Benefits and Uses

Replacement for nonyl phenol ethoxylates and natural oil-based surfactants Partial replacement for silicone ethoxylates

CARDOLITE SURFACTANTS

Table 20: CNSL-based Surfactants

Properties	NX-7507 7 EO	NX-7509 9 EO	NX-7512 12 EO
Color (Gardner)	8	≤ 12	≤ 12
Viscosity at 25°C (cPs)	180	150 - 300	100 - 500
pH (5% Aq. Soln.)	8.1	7.0 - 10.0	6.5 - 9.0
HLB values (calculated)	10.1	11.4	12.8
OH value (mg KOH/g)	100	89	81
Cloud point (2% in BDG 10%)	66	74.5	80
Pour point (°C)	9	3	18
Surface tension (mN/m)	53.0	50.1	43.7
Foaming efficiency (ml at 0,1 wt.% actives, 25°C, initial/5 minutes)	24/23	28/27	47/42

Rigid Foam Product Overview | 27

www.cardolite.com

Cardolite Corporation

140 Wharton Road Bristol, PA 19007 United States of America T: +1-800-322-7365

Cardolite Specialty Chemicals India LLP

Plot No. IP-1 & IP-2, Mangalore Special Economic Zone Bajpe, Mangalore, 574 142 India T: +91 (0) 824 2888 300

Cardolite Specialty Chemicals Europe NV

Wijmenstraat 21K / 2 B-9030 Mariakerke (Gent) Belgium T: +32 (0) 92658826 F: +32 (0) 92658824

September, 2021

Cardolite Chemical Zhuhai Ltd.

1248 Ninth Shihua Road Gaolan Port Economic Zone Zhuhai, Guangdong 519050 P.R. China T: +86-756-726-9066 F: +86-756-726-9067